Solution : permutations d'un nombre à trois chiffres distincts
    Tous les nombres que je peux former à l'aide des chiffres a, b et c sont : [abc](10), [acb](10), [bac](10), [bca](10), [cab](10), [cba](10), car les chiffres a, b et c étant distincts, les six nombres sont distincts également.
    Il me reste à sommer ces nombres ...
    [abc](10) + [acb](10) + [bac](10) + [bca](10) + [cab](10) + [cba](10) = 100 x a + 10 x b + c + 100 x a + 10 x c + b + 100 x b + 10 x a + c + 100 x b + 10 x c + a + 100 x c + 10 x a + b + 100 x c + 10 x b + a = 222 x a + 222 x b + 222 x c = 222 x (a + b + c) et a + b + c, comme 222, sont des diviseurs de cette somme.